The Maternal-Effect Gene cellular island Encodes Aurora B Kinase and Is Essential for Furrow Formation in the Early Zebrafish Embryo
نویسندگان
چکیده
Females homozygous for a mutation in cellular island (cei) produce embryos with defects in cytokinesis during early development. Analysis of the cytoskeletal events associated with furrow formation reveal that these defects include a general delay in furrow initiation as well as a complete failure to form furrow-associated structures in distal regions of the blastodisc. A linkage mapping-based candidate gene approach, including transgenic rescue, shows that cei encodes the zebrafish Aurora B kinase homologue. Genetic complementation analysis between the cei mutation and aurB zygotic lethal mutations corroborate gene assignment and reveal a complex nature of the maternal-effect cei allele, which appears to preferentially affect a function important for cytokinesis in the early blastomeres. Surprisingly, in cei mutant embryos a short yet otherwise normal furrow forms in the center of the blastodisc. Furrow formation is absent throughout the width of the blastodisc in cei mutant embryos additionally mutant for futile cycle, which lack a spindle apparatus, showing that the residual furrow signal present in cei mutants is derived from the mitotic spindle. Our analysis suggests that partially redundant signals derived from the spindle and astral apparatus mediate furrow formation in medial and distal regions of the early embryonic blastomeres, respectively, possibly as a spatial specialization to achieve furrow formation in these large cells. In addition, our data also suggest a role for Cei/AurB function in the reorganization of the furrow-associated microtubules in both early cleavage- and somite-stage embryos. In accordance with the requirement for cei/aurB in furrow induction in the early cleavage embryo, germ plasm recruitment to the forming furrow is also affected in embryos lacking normal cei/aurB function.
منابع مشابه
A mutation in the zebrafish maternal-effect gene nebel affects furrow formation and vasa RNA localization
BACKGROUND In many animals, embryonic patterning depends on a careful interplay between cell division and the segregation of localized cellular components. Both of these processes in turn rely on cytoskeletal elements and motor proteins. A type of localized cellular component found in most animals is the germ plasm, a specialized region of cytoplasm that specifies the germ-cell fate. The gene v...
متن کاملTargeting Aurora B to the Equatorial Cortex by MKlp2 Is Required for Cytokinesis
Although Aurora B is important in cleavage furrow ingression and completion during cytokinesis, the mechanism by which kinase activity is targeted to the cleavage furrow and the molecule(s) responsible for this process have remained elusive. Here, we demonstrate that an essential mitotic kinesin MKlp2 requires myosin-II for its localization to the equatorial cortex, and this event is required t...
متن کاملA role for non-muscle myosin II function in furrow maturation in the early zebrafish embryo.
Cytokinesis in early zebrafish embryos involves coordinated changes in the f-actin- and microtubule-based cytoskeleton, and the recruitment of adhesion junction components to the furrow. We show that exposure to inhibitors of non-muscle myosin II function does not affect furrow ingression during the early cleavage cycles but interferes with the recruitment of pericleavage f-actin and cortical b...
متن کاملMultinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells.
Aurora- and Ipl1-like midbody-associated protein (AIM-1) is a serine/ threonine kinase that is structurally related to Drosophila aurora and Saccharomyces cerevisiae Ipl1, both of which are required for chromosome segregation. A kinase-negative form of AIM-1 inhibits the formation of cleavage furrow without affecting nuclear division, indicating that the gene controls entry into cytokinesis dur...
متن کاملTime Course of Degradation and Deadenylation of Maternal c-mos and Cyclin A2 mRNA during Early Development of One-Cell Embryo in Mouse
Early in the development of many animals, before transcription begins, any change in the pattern of protein synthesis is attributed to a change in the translational activity or stability of mRNA in the egg and early embryo. As a result, translational control is critical for a variety of developmental decisions, including oocyte maturation and initiation of preimplantation development. In this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Genetics
دوره 5 شماره
صفحات -
تاریخ انتشار 2009